84 research outputs found

    The Neighboring Sulfonium Group in Ester Hydrolysis. III

    Get PDF
    Z- and E-2-carbomethoxy-3-(methylenedimethylsulfonio)-bicyclo- [2.2.2]octane p-toluenesulfonate (8z and 8e, respectively) were synthesized and saponified at constant pH to study the effect of the neighboring sulfonium group on the rate of reaction. Rates and activation parameters are very similar for both isomers, lending support to the theoretical prediction that charge-dipole and charge-charge separation in both isomers is not significantly different, and that the carbonyl-dipole vector is nearly normal to a line connecting it with the sulfonium sulfur atom

    From Your Nose to Your Toes: A Review of Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic‒Associated Pernio

    Get PDF
    Despite thousands of reported patients with pandemic-associated pernio, low rates of seroconversion and PCR positivity have defied causative linkage to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pernio in uninfected children is associated with monogenic disorders of excessive IFN-1 immunity, whereas severe COVID-19 pneumonia can result from insufficient IFN-1. Moreover, SARS-CoV-2 spike protein and robust IFN-1 response are seen in the skin of patients with pandemic-associated pernio, suggesting an excessive innate immune skin response to SARS-CoV-2. Understanding the pathophysiology of this phenomenon may elucidate the host mechanisms that drive a resilient immune response to SARS-CoV-2 and could produce relevant therapeutic targets

    DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice

    Get PDF
    In humans, DOCK8 immunodeficiency syndrome is characterized by severe cutaneous viral infections. Thus, CD8 T cell function may be compromised in the absence of DOCK8. In this study, by analyzing mutant mice and humans, we demonstrate a critical, intrinsic role for DOCK8 in peripheral CD8 T cell survival and function. DOCK8 mutation selectively diminished the abundance of circulating naive CD8 T cells in both species, and in DOCK8-deficient humans, most CD8 T cells displayed an exhausted CD45RA+CCR7? phenotype. Analyses in mice revealed the CD8 T cell abnormalities to be cell autonomous and primarily postthymic. DOCK8 mutant naive CD8 T cells had a shorter lifespan and, upon encounter with antigen on dendritic cells, exhibited poor LFA-1 synaptic polarization and a delay in the first cell division. Although DOCK8 mutant T cells underwent near-normal primary clonal expansion after primary infection with recombinant influenza virus in vivo, they showed greatly reduced memory cell persistence and recall. These findings highlight a key role for DOCK8 in the survival and function of human and mouse CD8 T cells

    “Acute kidney injury in critically ill patients with COVID–19: The AKICOV multicenter study in Catalonia”

    Full text link
    This study describes the incidence, evolution and prognosis of acute kidney injury (AKI) in critical COVID-19 during the first pandemic wave. We performed a prospective, observational, multicenter study of confirmed COVID-19 patients admitted to 19 intensive care units (ICUs) in Catalonia (Spain). Data regarding demographics, comorbidities, drug and medical treatment, physiological and laboratory results, AKI development, need for renal replacement therapy (RRT) and clinical outcomes were collected. Descriptive statistics and logistic regression analysis for AKI development and mortality were used. A total of 1,642 patients were enrolled (mean age 63 (15.95) years, 67.5% male). Mechanical ventilation (MV) was required for 80.8% and 64.4% of these patients, who were in prone position, while 67.7% received vasopressors. AKI at ICU admission was 28.4% and increased to 40.1% during ICU stay. A total of 172 (10.9%) patients required RRT, which represents 27.8% of the patients who developed AKI. AKI was more frequent in severe acute respiratory distress syndrome (ARDS) ARDS patients (68% vs 53.6%, p<0.001) and in MV patients (91.9% vs 77.7%, p<0.001), who required the prone position more frequently (74.8 vs 61%, p<0.001) and developed more infections. ICU and hospital mortality were increased in AKI patients (48.2% vs 17.7% and 51.1% vs 19%, p <0.001) respectively). AKI was an independent factor associated with mortality (IC 1.587-3.190). Mortality was higher in AKI patients who required RRT (55.8% vs 48.2%, p <0.04). Conclusions There is a high incidence of AKI in critically ill patients with COVID-19 disease and it is associated with higher mortality, increased organ failure, nosocomial infections and prolonged ICU stay

    "Acute kidney injury in critically ill patients with COVID-19 : The AKICOV multicenter study in Catalonia"

    Get PDF
    This study describes the incidence, evolution and prognosis of acute kidney injury (AKI) in critical COVID-19 during the first pandemic wave. We performed a prospective, observational, multicenter study of confirmed COVID-19 patients admitted to 19 intensive care units (ICUs) in Catalonia (Spain). Data regarding demographics, comorbidities, drug and medical treatment, physiological and laboratory results, AKI development, need for renal replacement therapy (RRT) and clinical outcomes were collected. Descriptive statistics and logistic regression analysis for AKI development and mortality were used. A total of 1,642 patients were enrolled (mean age 63 (15.95) years, 67.5% male). Mechanical ventilation (MV) was required for 80.8% and 64.4% of these patients, who were in prone position, while 67.7% received vasopressors. AKI at ICU admission was 28.4% and increased to 40.1% during ICU stay. A total of 172 (10.9%) patients required RRT, which represents 27.8% of the patients who developed AKI. AKI was more frequent in severe acute respiratory distress syndrome (ARDS) ARDS patients (68% vs 53.6%, p<0.001) and in MV patients (91.9% vs 77.7%, p<0.001), who required the prone position more frequently (74.8 vs 61%, p<0.001) and developed more infections. ICU and hospital mortality were increased in AKI patients (48.2% vs 17.7% and 51.1% vs 19%, p <0.001) respectively). AKI was an independent factor associated with mortality (IC 1.587-3.190). Mortality was higher in AKI patients who required RRT (55.8% vs 48.2%, p <0.04). Conclusions There is a high incidence of AKI in critically ill patients with COVID-19 disease and it is associated with higher mortality, increased organ failure, nosocomial infections and prolonged ICU stay

    Enhancement of Polymeric Immunoglobulin Receptor Transcytosis by Biparatopic VHH

    Get PDF
    The polymeric immunoglobulin receptor (pIgR) ensures the transport of dimeric immunoglobulin A (dIgA) and pentameric immunoglobulin M (pIgM) across epithelia to the mucosal layer of for example the intestines and the lungs via transcytosis. Per day the human pIgR mediates the excretion of 2 to 5 grams of dIgA into the mucosa of luminal organs. This system could prove useful for therapies aiming at excretion of compounds into the mucosa. Here we investigated the use of the variable domain of camelid derived heavy chain only antibodies, also known as VHHs or Nanobodies®, targeting the human pIgR, as a transport system across epithelial cells. We show that VHHs directed against the human pIgR are able to bind the receptor with high affinity (∼1 nM) and that they compete with the natural ligand, dIgA. In a transcytosis assay both native and phage-bound VHH were only able to get across polarized MDCK cells that express the human pIgR gene in a basolateral to apical fashion. Indicating that the VHHs are able to translocate across epithelia and to take along large particles of cargo. Furthermore, by making multivalent VHHs we were able to enhance the transport of the compounds both in a MDCK-hpIgR and Caco-2 cell system, probably by inducing receptor clustering. These results show that VHHs can be used as a carrier system to exploit the human pIgR transcytotic system and that multivalent compounds are able to significantly enhance the transport across epithelial monolayers

    Binary systems and their nuclear explosions

    Get PDF
    Peer ReviewedPreprin

    A quantitative analysis of complexity of human pathogen-specific CD4 T cell responses in healthy M. tuberculosis infected South Africans

    Get PDF
    Author Summary: Human pathogen-specific immune responses are tremendously complex and the techniques to study them ever expanding. There is an urgent need for a quantitative analysis and better understanding of pathogen-specific immune responses. Mycobacterium tuberculosis (Mtb) is one of the leading causes of mortality due to an infectious agent worldwide. Here, we were able to quantify the Mtb-specific response in healthy individuals with Mtb infection from South Africa. The response is highly diverse and 66 epitopes are required to capture 80% of the total reactivity. Our study also show that the majority of the identified epitopes are restricted by multiple HLA alleles. Thus, technical advances are required to capture and characterize the complete pathogen-specific response. This study demonstrates further that the approach combining identified epitopes into "megapools" allows capturing a large fraction of the total reactivity. This suggests that this technique is generally applicable to the characterization of immunity to other complex pathogens. Together, our data provide for the first time a quantitative analysis of the complex pathogen-specific T cell response and provide a new understanding of human infections in a natural infection setting
    corecore